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ABSTRACT
When a large dataset is given, it is not desirable for a user to read

all tuples one-by-one in the whole dataset to find satisfied tuples.

The traditional top-𝑘 query finds the best 𝑘 tuples (i.e., the top-𝑘

tuples) w.r.t. the user’s preference. However, in practice, it is difficult

for a user to specify his/her preference explicitly. We study how

to enhance the top-𝑘 query with user interaction. Specifically, we
ask a user several questions, each of which consists of two tuples

and asks the user to indicate which one s/he prefers. Based on

the feedback, the user’s preference is learned implicitly and one

of the top-𝑘 tuples w.r.t. the learned preference is returned. Here,

instead of directly following the top-𝑘 query to return all the top-𝑘

tuples, since it requires heavy user effort during the interaction (e.g.,

answering many questions), we reduce the output size to strike for

a trade-off between the user effort and the output size.

To achieve this, we present an algorithm 2D-PI which asks an

asymptotically optimal number of questions in a 2-dimensional

space, and two algorithms HD-PI and RH with provable perfor-

mance guarantee in a 𝑑-dimensional space (𝑑 ≥ 2), where they

focus on the number of questions asked and the execution time,

respectively. Experiments were conducted on synthetic and real

datasets, showing that our algorithms outperform existing ones by

asking fewer questions within less time to return satisfied tuples.
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1 INTRODUCTION
Assisting users to find satisfied tuples in a large dataset is an im-

portant task in a variety of application domains [35, 39], including

purchasing used cars, renting apartments and searching dating part-

ners. For example, consider the scenario of purchasing used cars.
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Each car could be described by some attributes, e.g., price, horse

power and used kilometers. Assume that Alice would like to buy

a cheap used car with high horse power. In literature [22, 27, 36],

Alice’s preference is represented by a monotonic function, called a

utility function. Based on the function, each car has a utility (i.e.,

the function score). It shows to what extent Alice favors the car,

where a higher utility indicates the car is more favored by her.

Although various operators have been proposed for this scenario

known as multi-criteria decision-making, they still have some weak-

nesses. Two representative operators are the top-𝑘 query [17, 26, 33]

and the skyline query [7]. The first operator is the top-𝑘 query

[17, 26, 33], which returns 𝑘 tuples with the highest utilities, namely

top-𝑘 tuples, w.r.t. the user’s utility function. It assumes that a user

knows his/her utility function precisely [22, 36]. However, in prac-

tice, it is very likely that Alice has difficulty in specifying that her

utility function has weight 41.2% for price and 58.8% for horse

power. Here, a higher weight indicates that the corresponding at-

tribute is more important to Alice. If the weights given to the system

differ slightly, the output can vary a lot. The second operator is the

skyline query [7] which, instead of asking for an explicit utility func-

tion, considers all utility functions and returns tuples which have

the highest utilities (i.e., top-1) w.r.t. at least one utility function.

Unfortunately, the output size of the skyline query is uncontrollable

and it often overwhelms users with excessive results [22, 23].

Motivated by the limitations of these operators, we propose a

problem called Interactive Search for One of the Top-𝑘 (IST) which
involves user interaction and asks a user as few easy questions as

possible so that one of the top-𝑘 tuples is returned as the answer to

the user where 𝑘 is a positive integer. Problem IST has the following

two advantages: (1) Unlike the top-𝑘 query, problem IST does not

require a user to specify an explicit utility function; (2) Unlike

the skyline query, problem IST has a controllable output size (i.e.,

only one tuple will be returned as the answer). Based on the user’s

feedback during interaction, the user’s utility function is implicitly

learned and one of the top-𝑘 tuples is guaranteed to be returned.

To interact with the user, following [27, 36], for each question, we
present the user with two candidate tuples and ask the user which
tuple s/he prefers. This kind of interaction naturally appears in our

daily life. For example, a car seller might show Alice two used cars

and ask her which one she prefers. A matchmaker may present two

candidates and ask Alice: which person would you like to date?

One characteristic of problem IST is that it involves a number

of questions for asking a user. It is expected that the total number

of questions asked should not be too many. In the literature of the

marketing research [20, 28, 29], the maximum number of questions

asked should be around 10. Besides, in real applications, involving

excessive questions may not be good to the user. Consider the

scenario about purchasing a used car where each car is unique in

the market. If Alice looks for all (or some) of the top-𝑘 used cars,
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she might spend days and weeks for selection. Due to the high-

frequency of trading, it is possible that the car chosen by her has

already been sold. Thus, a timely interaction and recommendation

are crucial. Consider another scenario where Alice plans to rent an

apartment for several months. Since this is a short-term need, it

is not necessary for her to spend a lot of time cherry-picking. She

could be frustrated due to the long selection process even if finally,

several candidate (i.e., some of the top-𝑘) apartments are returned.

To the best of our knowledge, we are the first to study problem

IST. Some closely related problems are [14, 22, 27, 36] but they

are different from ours. [14] also involves user interaction but it

wants to find the ranking of all tuples (including the top-𝑘 tuples)

by interacting with the user. Since the ranking of all tuples has

to be determined, there are a lot of questions asked during user

interaction. Besides, it has an assumption that all tuples are in the

general position [30], which could not be applied in many cases.

Roughly speaking, all tuples in the general position satisfies some

geometry properties (e.g., no 3 points are co-linear), which is not

realistic in real datasets. [22, 36] still involve user interaction but

they aim at finding tuples in the answer such that a criterion called

the regret ratio, evaluating how “regretful” a user is when seeing

resulting tuples based on the concept of the top-𝑘 query, is min-

imized. It is observed that the returned tuples are satisfying one

concept called “regret ratio”, which is not quite intuitive as “one

of the top-𝑘” studied in our IST problem. Furthermore, a variant

of [22, 36] could return the top-1 tuple as the answer. However, in

our experiment, it needs more than 15 questions in many cases for

asking a user, which is quite troublesome. As mentioned above, the

maximum number of questions asked should be around 10. 15 is

not quite acceptable to a user. The user study in our experimental

study also verifies that people do not prefer being bothered with a

lot of questions even the top-1 tuple is returned. Furthermore, [22]

involves “fake” tuples (i.e., tuples not in the dataset) in the questions

during user interaction. [27] involves user interaction and finds the

user’s utility function by interacting with the user. Similar to [14],

since [27] has to find a precise utility function, there are a lot of

redundant questions asked during user interaction, which may not

be relevant to our desired answer (i.e., one of the top-𝑘 tuples).

Unfortunately, none of the existing algorithms could be adapted

to solve problem IST satisfactorily. They generate a lot of questions

to ask a user, which is quite troublesome to the user. In our ex-

periments, when 𝑘 ≥ 50, most adapted algorithms [14, 22, 27, 36]

require asking a user more than 20 questions, which are too many.

Our contributions are described as follows. Firstly, to the best

of our knowledge, we are the first one to propose the problem

of returning one of the user’s top-𝑘 tuples by interacting with the

user. We show a lower bound Ω(log
2

𝑛
𝑘
) on the number of questions

asked during the interaction. Secondly, we propose an algorithm 2D-
PI in a 2-dimensional space. It asks 𝑂 (log

2
⌈ 2𝑛
𝑘+1 ⌉) questions to find

one of the top-𝑘 tuples, which is asymptotically optimal in terms

of the number of questions asked. Thirdly, we design an algorithm

HD-PI with a provable guarantee in a 𝑑-dimensional space, which

also performs well empirically. Fourthly, we propose an algorithm

RH in a 𝑑-dimensional space. It guarantees a logarithmic number

of questions in expectation, which is asymptotically optimal if

the dimensionality is fixed. Fifthly, we conducted experiments to

demonstrate the superiority of our algorithms. The results show

that our algorithms are able to return one of the user’s top-𝑘 tuples

by requiring nearly half the number of questions compared with

the existing algorithms when 𝑘 is of medium size (e.g., 𝑘 ≥ 50).

In the following, we start by discussing the related work in

Section 2. The formal definition of our problem is illustrated in

Section 3. In Section 4, we propose an asymptotically optimal al-

gorithm 2D-PI in a 2-dimensional space. In Section 5, we propose

two algorithms HD-PI and RH with provable guarantees on the

number of questions asked in a 𝑑-dimensional space. Experiments

are shown in Section 6 and finally, Section 7 concludes this paper.

2 RELATEDWORK
Various queries were proposed to assist the multi-criteria decision

making. Based on whether user interaction is involved, they can be

classified into two categories: the preference-based queries and the

interactive queries.
In addition to the top-𝑘 query and the skyline query described in

Section 1, there are two other queries for preference-based queries,

namely the similarity query [4, 32] and the regret minimizing query

[10, 23, 25]. The similarity query [4, 32] finds tuples which are close

to a given query tuple w.r.t. a given distance function. However, it

relies on an assumption that the query tuple and the distance func-

tion are known in advance [5]. In practice, a user does not always

know the query tuple or the distance function. Even if the query

tuple or the distance function is known, the user needs to spend

additional effort specifying them. The regret minimizing query

[10, 23, 25], another type of preference-based query, which avoids

this problem, defines a criterion called regret ratio which evaluates

returned tuples and represents how regretful a user is when s/he

sees the returned tuples instead of the whole dataset, and it aims to

find tuples which minimize the regret ratio. However, it is hard to

achieve a small output size and a small regret ratio simultaneously.

When a small output size is fixed, the regret ratio is typically large

[10, 36]. For further details, see [16, 37] and references therein.

To overcome the deficiencies of the preference-based queries,

some existing studies [2, 3, 5, 6, 18, 22, 31, 36, 40] involve user in-

teraction. [2, 3, 18] proposed the interactive skyline query, which

tries to reduce the number of skyline tuples in the answer by inter-

acting with the user. However, it only learns the user’s preference

on the values of attributes (e.g., values red, yellow and blue on the

color attribute). Even if the preference on all values is obtained, the

number of skyline tuples could still be arbitrarily large [23].

[5, 6, 31] proposed the interactive similarity query which learns

the exact query tuple and the distance function with the help of

user interaction. However, during the interaction, it requires a user

to assign relevance scores for hundreds or thousands of tuples to
learn how close the tuples are to the query tuple. From the user’s

perspective, requiring the user to give accurate scores for a lot of

times is too demanding in practice. Besides, it is challenging to

determine an initial query tuple guaranteeing a good performance

because the initial query tuple affects the final output significantly.

[22] proposed the interactive regret minimizing query, which

targets to reduce the regret ratio while maintaining a small output

size by interacting with the user. It asks a user questions, each of

which consists of several tuples and asks the user to tell which one



s/he prefers. However, it displays fake tuples during the interaction,
which are artificially constructed (not selected from the dataset).

This might produce unrealistic tuples (e.g., a car with 10 dollars

and 50000 horse power) and the user can be disappointed if the

displayed tuples with which s/he is satisfied do not exist [36]. To

overcome the defect, [36] proposed algorithms UH-Simplex and UH-
Random, which utilize real tuples (selected from the dataset) for the

interactive regret minimization. However, they require heavy user

effort: answering many questions and waiting a long time for algo-

rithm processing. As shown in Section 6, our algorithms need fewer

questions and less time compared with them (e.g., half the number

of questions asked and execution time). Recently, [40] improved

the algorithms of [36] and proposed Sorting-Simplex and Sorting-
Random, which ask the user to give an order on the displayed tuples.

However, this does not reduce the user effort essentially, since giv-

ing an order among tuples is equivalent to picking the favorite tuple

several times. Note that both [36, 40] focus on finding the user’s

(close to) favorite tuple. To some extent, their problems [36, 40] can

be seen as a special case of our problem when 𝑘 = 1.

There are alternative approaches [15, 27] which focus on learning

the user preference with the help of user interaction. [27] proposed

algorithm Preference-Learning which approximates the user pref-

erence by pairwise comparison. Nevertheless, it aims at learning

the preference rather than returning tuples, and thus it might ask

the user unnecessary questions [36]. For example, if Alice prefers

car 𝑝1 to both 𝑝2 and 𝑝3, her preference between 𝑝2 and 𝑝3 is less

interesting in our case, but this additional comparison might be

useful in [27]. In addition, [15] learns the user preference on tuples

with undetermined attributes, where there is no universal prefer-

ence defined on values of those attributes for all users. For example,

consider an attribute color containing 3 values: red, green and blue.
The preferences on red, green and blue can vary dramatically from

different users. In our problem, all attributes are determined.

In the literature of machine learning, our problem is related to

the problem of learning to rank [12, 14, 19, 21], which learns the

ranking of tuples by pairwise comparison. However, most of the

existing methods [12, 19, 21] only consider the relations between

tuples (where a relation means that a tuple is preferable to another

tuple) and do not utilize their inter-relation (where attribute “price”

is an example of an inter-relation showing that $200 is better than

$500 since $200 is cheaper), and thus, require more feedback from

the user [36]. Algorithm Active-Ranking [14] considers the inter-

relation between tuples to learn the ranking by interacting with the

user. However, it assumes that all tuples are in the general position
[30], which could not be applied in many cases. Besides, it focuses

on deriving the order for all pairs of tuples, which requires asking

unnecessary questions due to the similar reason stated for [27].

Our work focuses on returning one of the top-𝑘 tuples by inter-

acting with the user on real tuples. This avoids the weaknesses of

existing studies: (1) We do not require a user to provide an exact

utility function (required in the top-𝑘 query) or a distance function

(required in the similarity query). (2) We return one of the top-𝑘

tuples (but the skyline query has an uncontrollable output size)

(3) We guarantee that the returned tuple must be among the top-𝑘

tuples (but the regret minimizing query does not have a clear and

intuitive interpretation of the quality of the answer). (4)We only use

real tuples during the interaction (unlike [22] which utilizes fake

tuples). (5) We only involve a few easy questions since we return

one of the top-𝑘 tuples. Firstly, existing studies like [12, 19, 21] ask a

lot of questions since they require to learn a full ranking. Secondly,

[12, 19, 21] do not utilize the inter-relation between tuples and thus,

involve some unnecessary interaction. Thirdly, [40] requires a user

to sort tuples and [5, 31] require a user to assign concrete scores.

But, we just require a user to pick a favorite tuple between two

candidates for each question, which is easier to handle.

Table 1 shows a comparison on the number of questions asked

between our algorithms and several existing algorithms which

can be adapted to our problem. Their adaptations are detailed in

Section 6. It can be seen that our algorithm HD-PI is independent
of the dimensionality in the optimal case and RH is asymptotically

optimal in expectation when the dimensionality is fixed. Note that

although algorithm Active-Ranking has an expected logarithmic

bound, it is under the condition that all tuples are in the general

position, but the bound of RH works for arbitrary cases.

3 PROBLEM DEFINITION
The input of our problem is a set 𝐷 containing 𝑛 tuples specified

by 𝑑 attributes. In the rest of this paper, we regard each tuple as

a point in a 𝑑-dimensional space and use the words “tuple” and

“point” interchangeably. For each point 𝑝 , its 𝑖-th dimensional value

is denoted by 𝑝 [𝑖], where 𝑖 ∈ [1, 𝑑]. Without loss of generality,

following [36, 38], we assume that each dimension is normalized

to (0, 1] and a larger value is more favored by users in each di-

mension. Consider Table 2 as an example. It contains 5 points in a

2-dimensional space, where each dimension is normalized.

Following [1, 36], the user preference is modeled by a linear

function 𝑓 (𝑝) = ∑𝑑
𝑖=1 𝑢 [𝑖]𝑝 [𝑖], called the utility function, denoted

by 𝑓 (𝑝) = 𝑢 · 𝑝 for simplicity, which is a mapping 𝑓 : R𝑑+ → R+,
where 𝑢 is a 𝑑-dimensional non-negative vector, called the utility
vector, and 𝑓 (𝑝) is the utility of 𝑝 w.r.t. 𝑓 . For each 𝑢 [𝑖], where
𝑖 ∈ [1, 𝑑], it represents to what extent the user cares about the 𝑖-th

attribute. A larger value means that this attribute is more important

to the user. In the rest of this paper, we use “utility vector” to

refer to the user preference and call the domain of 𝑢 the utility
space. Given a utility vector 𝑢, the utility of each point can be

computed and then the 𝑘 points with the largest utility (i.e., the

top-𝑘 points) can be found. Since the ranking of points remains

unchanged with different scaled utility vectors [22, 36], for the

ease of presentation, we assume that

∑𝑑
𝑖=1 𝑢 [𝑖] = 1. Then, the

utility space can be viewed as a (𝑑 − 1)-dimensional polyhedron.

For example, in a 2-dimensional space, the utility space is a line

segment: 𝑢 [1] + 𝑢 [2] = 1 with 𝑢 [1], 𝑢 [2] > 0.

Example 3.1. Let 𝑓 (𝑝) = 0.4𝑝 [1] + 0.6𝑝 [2] (i.e., 𝑢 = (0.4, 0.6)).
Consider Table 2. The utility of 𝑝2 w.r.t. 𝑓 is 𝑓 (𝑝2) = 0.4 × 0.3 +
0.6 × 0.7 = 0.54. The utilities of the other points can be computed

similarly. Assume 𝑘 = 2. Points 𝑝1 and 𝑝3 with the highest utilities

are the top-𝑘 points.

Given a point set 𝐷 , our goal is to return a point, which is one

of the user’s top-𝑘 points, by interacting with the user for rounds.

In each round, the system chooses a pair of points as a question

presented to the user and asks the user to indicate which one s/he

prefers. Based on the feedback, the user’s preference is learned



Algorithm (𝑑 dimension) Worst Case Optimal Case Expected Case

UH-Random [36] 𝑂 (𝑛) Unknown Unknown

UH-Simplex [36] 𝑂 (𝑛) Unknown 𝑂 (𝑑𝑒𝑔𝑚𝑎𝑥
𝑑
√
𝑛)

Active-Ranking [14] 𝑂 (𝑛2) 𝑂 (𝑑 log𝑛) 𝑂 (𝑐𝑑 log𝑛) , where 𝑐 > 1

Preference-Learning [27] 𝑂 (𝑛2) Unknown Unknown

RH 𝑂 (𝑛2) 𝑂 (𝑑 log𝑛) 𝑂 (𝑐𝑑 log𝑛) , where 𝑐 > 1

HD-PI 𝑂 (𝑛) 𝑂 (log𝑛) Unknown

Table 1: Algorithm comparison (𝑘 ≥ 1)

𝑝 𝑝 [1] 𝑝 [2] 𝑓 (𝑝) rank

𝑝1 0 1 0.6 2

𝑝2 0.3 0.7 0.54 3

𝑝3 0.5 0.8 0.68 1

𝑝4 0.7 0.4 0.52 4

𝑝5 1 0 0.4 5

Table 2: Dataset(𝑢 = (0.4, 0.6))
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Figure 1: 2D Partitions

implicitly. When sufficient information has been collected, the in-

teraction stops and the system returns the desired point to the user.

Formally, we are interested in the following problem.

Problem 1. (Interactive Search for One of the Top-k (IST))
Given a point set 𝐷 , we are to ask a user as few questions as possible
to identify a point 𝑝 in 𝐷 , which is one of the user’s top-𝑘 points.

Theorem 3.2. There exists a dataset of 𝑛 points such that for any
algorithm, it needs to ask a user Ω(log

2

𝑛
𝑘
) questions in order to

determine a point 𝑝 , which is one of the user’s top-𝑘 points.

Proof Sketch. Consider a dataset 𝐷 , where ∀𝑝 ∈ 𝐷 , there are
𝑘 − 1 points 𝑞 ∈ 𝐷 \ {𝑝} such that ∀𝑖 ∈ [1, 𝑑], 𝑝 [𝑖] = 𝑞 [𝑖]. We show

that any algorithm needs to ask Ω(log
2

𝑛
𝑘
) questions to identify

one of the user’s top-𝑘 points on this dataset. □

4 2D ALGORITHM
In this section, we focus on 2-dimensional IST. We propose an

asymptotically optimal algorithm, called 2D-PI, which is able to re-

turn the desired point by asking a logarithmic number of questions.

4.1 Preliminary
Recall that in a 2-dimensional space, 𝑢 [1] + 𝑢 [2] = 1. The utility

of each point 𝑝 is written as 𝑓 (𝑝) = 𝑢 [1]𝑝 [1] + (1 −𝑢 [1])𝑝 [2] (i.e.,
it suffices to consider 𝑢 [1] only). From a geometric perspective, if

we plot the utility of 𝑝 as a function of 𝑢 [1], 𝑝 can be mapped to

a line segment ℓ : 𝑓 (𝑝) = (𝑝 [1] − 𝑝 [2])𝑢 [1] + 𝑝 [2], whose slope is
(𝑝 [1] − 𝑝 [2]) and intercept is 𝑝 [2], and the utility space can be

viewed as an interval, i.e., 𝑢 [1] ∈ [0, 1]. For example, as shown

in Figure 1, 𝑝2 in Table 2 can be mapped or transformed to a line

segment ℓ2 : 𝑓 (𝑝2) = −0.4𝑢 [1] + 0.7. Similarly, other points 𝑝𝑖 in

Table 2 are also mapped to line segments ℓ𝑖 shown in Figure 1.

By transforming points into line segments, the ranking of points

w.r.t. a utility vector𝑢 can be easily visualized. Specifically, we build

a vertical line 𝑡 for each 𝑢, called the utility line, passing through
(𝑢 [1], 0) in the geometric space. The ranking of points w.r.t.𝑢 is the

same as the order of the intersections (from top to bottom) between

𝑡 and the transformed line segments. For example, in Figure 1, the

ranking of points w.r.t. 𝑢0.1 = (0.1, 0.9) is < 𝑝1, 𝑝3, 𝑝2, 𝑝4, 𝑝5 > and

the utility line of 𝑢0.1 also intersects ℓ1, ℓ3, ℓ2, ℓ4 and ℓ5 in order.

Intuitively, our algorithm 2D-PI consists of two steps: (1) utility

space partitioning and (2) user interaction. We first divide the utility

space [0, 1] into a number of disjoint partitions, where the 𝑥-th

partition, denoted by Θ𝑥 , is an interval [𝑙𝑥 , 𝑟𝑥 ] with 𝑙𝑥 = 𝑟𝑥−1. Each
partition Θ𝑥 is associated with a point 𝑞𝑥 which is among the top-

𝑘 points w.r.t. any utility vector in Θ𝑥 . For example in Figure 1,

let 𝑘 = 2. The utility space can be divided into two partitions

Θ1 = [0, 0.67] and Θ2 = [0.67, 1], where 𝑝3 is among the top-2

points w.r.t. any utility vector in Θ1; similarly for 𝑝4 in Θ2. Then,

we interact with the user by asking questions to locate the partition

containing the user’s utility vector and return the associated point.

In the following, we first present the method for utility space par-

titioning in Section 4.2, and then discuss the strategy of interacting

with the user to quickly locate the target partition in Section 4.3.

4.2 Utility Space Partitioning
Since the user’s utility vector can be located more quickly with

fewer partitions, we divide the utility space into the least number of

partitions by plane sweeping in the geometric space. Specifically, we

sweep the utility line 𝑡 from left to right by varying its 𝑢 [1]-value
from 0 to 1. During the process, we maintain two data structures: (1)

a queue Q of size 𝑛, which stores all the points 𝑝𝑖 ∈ 𝐷 based on the

order (from top to bottom) of the interactions between 𝑡 and 𝑙𝑖 ; (2) a

min-heapH , which records the intersection ∧𝑖, 𝑗 between ℓ𝑖 and ℓ𝑗
of each pair of neighboring points, namely 𝑝𝑖 and 𝑝 𝑗 , in Q, by using
the distance between∧𝑖, 𝑗 and 𝑡 as the key of the min-heap, provided

that ∧𝑖, 𝑗 is on the right of 𝑡 and ∧𝑖, 𝑗 [1] ≤ 1 (call an intersection

satisfying this condition as a valid intersection). Furthermore, each

point in 𝐷 might be associated with a label T𝑥 if it could be one of

the top-𝑘 points w.r.t. the utility vector (𝑙𝑥 , 1 − 𝑙𝑥 ).
At the beginning, the 𝑢 [1]-value of 𝑡 is set to 0. Start the first

partition Θ1 with 𝑙1 = 0. We insert into Q all the points 𝑝𝑖 ∈ 𝐷
based on the order of the intersections between 𝑡 and ℓ𝑖 and label

the first 𝑘 points with T1.H is initialized with the valid intersec-

tions of all the neighboring pairs in Q. During sweeping, we stop 𝑡

at any intersection popped fromH , updating the data structures

and constructing partitions. Suppose that now, partition Θ𝑥 is con-

structed. We pop the next intersection ∧𝑖, 𝑗 fromH , which is the

intersection between lines ℓ𝑖 and ℓ𝑗 , and move 𝑡 to the right until it

hits ∧𝑖, 𝑗 . Then, we swap 𝑝𝑖 and 𝑝 𝑗 in Q, and insert intoH two new

intersections (i.e., 𝑝𝑖 and its new neighbour in Q and 𝑝 𝑗 and its new

neighbour in Q) if they are valid. If 𝑝𝑖 and 𝑝 𝑗 are the 𝑘-th and (𝑘+1)-
th point in Q before swapping, we delete the label of 𝑝𝑖 and label

𝑝 𝑗 with T𝑥+1. If 𝑝𝑖 is the last point with label T𝑥 deleted, we end

partition Θ𝑥 by setting Θ𝑥 = [𝑙𝑥 , 𝑟𝑥 ] and 𝑞𝑥 = 𝑝𝑖 such that 𝑙𝑥 (resp.

𝑟𝑥 ) is the 𝑢 [1]-value of 𝑡 where we start (resp. end) partition Θ𝑥 .

Meanwhile, the construction of the next partition Θ𝑥+1 is started
with 𝑙𝑥+1 = 𝑟𝑥 . It can be easily verified that right now the top-𝑘

points in Q are already labeled with T𝑥+1. The algorithm continues

untilH is empty. The pseudocode is shown in Algorithm 1.

Example 4.1. Consider Figure 1 and let 𝑘 = 2. Initially, the 𝑢 [1]-
value of 𝑡 is 0. We beginΘ1 with 𝑙1 = 0, set Q =< 𝑝1, 𝑝3, 𝑝2, 𝑝4, 𝑝5 >

with 𝑝1 and 𝑝3 labeled by T1, and initializeH = {∧1,3,∧2,4,∧4,5},
where ∧2,3 is not included because it is not valid. Then, the closest

intersection ∧1,3 to 𝑡 is popped. We swap 𝑝1 and 𝑝3 in Q and insert

intoH a new intersection ∧1,2 (𝑝1 with its new neighbor 𝑝2). Since

𝑝3 has no new neighbor, no new intersection related to 𝑝3 is inserted



Algorithm 1: Utility Space Partitioning

Input: A point set 𝐷

Output: Θ = {Θ1,Θ2, ...,Θ𝑚}, E = {𝑞1, 𝑞2, ..., 𝑞𝑚}
1 Initialize 𝑡 with its 𝑢 [1]-value as 0, 𝑥 ← 1

2 Q ← 𝐷 based on the order of intersections between 𝑡 and ℓ𝑖

3 Label the first 𝑘 points in Q with T𝑥
4 InitializeH with valid intersections of all pairs in Q
5 while |H | > 0 do
6 Pop ∧𝑖, 𝑗 fromH , move 𝑡 to hit ∧𝑖, 𝑗 and update Q,H
7 if 𝑝𝑖 and 𝑝 𝑗 are the 𝑘-th and (𝑘 + 1)-th point in Q then
8 Delete the label of 𝑝𝑖 and label 𝑝 𝑗 with T𝑥+1
9 if 𝑝𝑖 is the last point with label T𝑥 deleted then
10 Θ𝑥 = [𝑙𝑥 , 𝑟𝑥 ], 𝑞𝑥 ← 𝑝𝑖 , 𝑥 ← 𝑥 + 1

11 return Θ = {Θ1,Θ2, ...,Θ𝑚}, E = {𝑞1, 𝑞2, ..., 𝑞𝑚}

intoH . Besides, the label of 𝑝1 and 𝑝3 are not updated since 𝑝1 and

𝑝3 are not the 𝑘-th and (𝑘 + 1)-th point in Q before swapping.

Theorem 4.2. Algorithm 1 runs in 𝑂 (𝑛2 log𝑛) time.

Proof. We need to process the intersections of line segments

w.r.t. all pairs of points in 𝐷 . Since |𝐷 | = 𝑛, there are 𝑂 (𝑛2) inter-
sections. At each intersection, we updateH and Q in𝑂 (log𝑛) and
𝑂 (1) time, respectively, and modify the labels in 𝑂 (1) time. There-

fore, the total time complexity of Algorithm 1 is 𝑂 (𝑛2 log𝑛). □

Lemma 4.3. Algorithm 1 divides the utility space into the least
number of partitions.

Proof Sketch. Use Θ′
𝑖
= [𝑙 ′

𝑖
, 𝑟 ′
𝑖
] and Θ𝑖 = [𝑙𝑖 , 𝑟𝑖 ] to denote the

𝑖-th partition of the optimal case and the 𝑖-th partition obtained

by our algorithm. We show that 𝑟 ′
𝑖
≤ 𝑟𝑖 , i.e., Θ𝑖 always ends not

“earlier” thanΘ′
𝑖
. This means that the number of partitions obtained

by our algorithm will not be more than that of the optimal case. □

Note that [1, 8] propose algorithms which achieve the similar

purpose. However, [1] only presents an approximate algorithm,

while our algorithm returns an exact solution. Besides, it is not easy

to process the real implementation of [8] due to its complicated data

structure with its theoretical result. To the best of our knowledge,

there is no real implementation of [8] in the literature.

4.3 User Interaction
After the utility space is partitioned, we interact with the user to

locate the partition containing the user’s utility vector. Consider

two points 𝑝𝑖 and 𝑝 𝑗 . If the intersection ∧𝑖, 𝑗 of their transformed

line segments ℓ𝑖 and ℓ𝑗 exists and satisfies 0 < ∧𝑖, 𝑗 [1] < 1, their

ranking will change once when 𝑡 sweeps from left to right, i.e.,

varies its 𝑢 [1]-value from 0 to 1. If point 𝑝𝑖 ranks higher than point

𝑝 𝑗 w.r.t. a utility vector 𝑢 (i.e., 𝑢 · 𝑝𝑖 > 𝑢 · 𝑝 𝑗 ), where 𝑢 [1] < ∧𝑖, 𝑗 [1],
𝑝𝑖 must rank lower than 𝑝 𝑗 w.r.t. any utility vector 𝑢 such that

𝑢 [1] > ∧𝑖, 𝑗 [1]. Then, if a user prefers 𝑝𝑖 to 𝑝 𝑗 , the 𝑢 [1]-value of
the user’s utility vector must be smaller than ∧𝑖, 𝑗 [1]. Otherwise,
it should be larger than ∧𝑖, 𝑗 [1]. Based on this idea, we locate the

partition containing the user’s utility vector by binary search.

Algorithm 2: User Interaction
Input: Θ = {Θ1,Θ2, ...,Θ𝑚}, E = {𝑞1, 𝑞2, ..., 𝑞𝑚}
Output: A point 𝑞𝑥 , which is one of the user’s top-𝑘 points

1 C ←< Θ1,Θ2, ...,Θ𝑚 >, 𝑙𝑒 𝑓 𝑡 ← 1, 𝑟𝑖𝑔ℎ𝑡 ←𝑚

2 while |C| > 1 do
3 𝑥 ← 𝑙𝑒 𝑓 𝑡 − 1 + ⌊ 𝑟𝑖𝑔ℎ𝑡−𝑙𝑒 𝑓 𝑡+1

2
⌋

4 Find points 𝑝𝑖 and 𝑝 𝑗 , where the intersection ∧𝑖, 𝑗 of ℓ𝑖
and ℓ𝑗 exists and satisfies ∧𝑖, 𝑗 [1] = 𝑟𝑥 .

5 Display 𝑝𝑖 and 𝑝 𝑗 to the user

6 if the user prefers 𝑝𝑖 to 𝑝 𝑗 then
7 𝑟𝑖𝑔ℎ𝑡 ← 𝑥

8 else
9 𝑙𝑒 𝑓 𝑡 ← 𝑥 + 1

10 C ←< Θ𝑙𝑒 𝑓 𝑡 , ...,Θ𝑟𝑖𝑔ℎ𝑡 >

11 return the associated point 𝑞𝑥 of the only partition left in C

We interact with the user for rounds, while maintaining a list

C to store the candidate partitions in order, initialized to be the

partitions obtained from Algorithm 1. In each round, we prune half

of partitions in C by asking the user a question. Specifically, we

find the median partition Θ𝑥 = [𝑙𝑥 , 𝑟𝑥 ] in C, and present the user

with two points 𝑝𝑖 and 𝑝 𝑗 , where the intersection ∧𝑖, 𝑗 of ℓ𝑖 and ℓ𝑗
exists and satisfies ∧𝑖, 𝑗 [1] = 𝑟𝑥 . Without loss of generality, assume

that 𝑝𝑖 ranks higher than 𝑝 𝑗 w.r.t. a utility vector 𝑢 with 𝑢 [1] < 𝑟𝑥 .
If the user prefers 𝑝𝑖 to 𝑝 𝑗 , C is updated to be the first half of C.
Otherwise, the remaining half of C is kept. The process continues

until there is only one partition Θ𝑥 left in C and the associated

point 𝑞𝑥 is returned. The pseudocode is shown in Algorithm 2.

Example 4.4. Continue Example 4.1. Initially, C =< Θ1,Θ2 > and

Θ1 is the median partition. We present the user with points 𝑝3 and

𝑝4, since intersection ∧3,4 exists and satisfies ∧3,4 [1] = 𝑟1. Suppose
the user prefers 𝑝3 to 𝑝4, C is updated to < Θ1 >. Because there is

only one partition left in C, the associated point 𝑞1 is returned.

Theorem 4.5. Algorithm 2D-PI solves 2-dimensional IST by inter-
acting with the user for 𝑂 (log

2
⌈ 2𝑛
𝑘+1 ⌉) rounds.

Proof Sketch. We show that there are at most ⌈ 2𝑛
𝑘+1 ⌉ partitions

if we divide the utility space by Algorithm 1. Since the number of

candidate partitions is reduced by half in each round, we can locate

the user’s utility vector after 𝑂 (log
2
⌈ 2𝑛
𝑘+1 ⌉) rounds. □

Corollary 4.6. Algorithm 2D-PI is asymptotically optimal in
terms of the number of questions asked for 2-dimensional IST.

5 HIGH DIMENSIONAL ALGORITHM
In this section, we consider high dimensional IST. We first show

some preliminaries in Section 5.1 and then develop two algorithms,

namely HD-PI and RH, in Section 5.2 and Section 5.3, respectively.

HD-PI enjoys good empirical performance. RH asks 𝑂 (𝑐𝑑 log
2
𝑛)

questions in expectation (𝑐 ≥ 1 is a constant), which is asymptoti-

cally optimal w.r.t. the number of questions asked if 𝑑 is fixed.
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ℎ𝑖,𝑗 in ℎ+
𝑖,𝑗

in ℎ−
𝑖,𝑗

intersect even score

ℎ1,2 Θ1 Θ2, Θ3, Θ4, Θ5 1

ℎ2,3 Θ1, Θ2, Θ4 Θ3, Θ5 2

ℎ2,4 Θ4, Θ5 Θ1, Θ2 Θ3 1.9

ℎ3,5 Θ4, Θ5 Θ3 Θ1, Θ2 0.8

Table 3: The inital list Γ (𝛽 = 0.1)

5.1 Preliminaries
Recall that in a 𝑑-dimensional space R𝑑 , the utility space is a (𝑑−1)-
dimensional polyhedron. For example, as shown in Figure 2, the

utility space is a triangular region when 𝑑 = 3. For each pair of

points 𝑝𝑖 , 𝑝 𝑗 ∈ 𝐷 , where 𝑖, 𝑗 ∈ [1, 𝑛], we can construct a hyperplane,
denote by ℎ𝑖, 𝑗 , which passes through the origin with its unit normal

in the same direction as 𝑝𝑖 − 𝑝 𝑗 . Hyperplane ℎ𝑖, 𝑗 divides the space
R𝑑 into two halves, called halfspaces [11]. The halfspace above

(resp. below) ℎ𝑖, 𝑗 , denoted by ℎ+
𝑖, 𝑗

(resp. ℎ−
𝑖, 𝑗
), contains all the utility

vectors 𝑢 such that 𝑢 · (𝑝𝑖 − 𝑝 𝑗 ) > 0 (resp. 𝑢 · (𝑝𝑖 − 𝑝 𝑗 ) < 0), i.e., 𝑝𝑖
ranks higher (resp. lower) than 𝑝 𝑗 w.r.t. 𝑢 [36].

In geometry, a polyhedron P is the intersection of a set of half-

spaces [11] and a point 𝑝 in P is said to be a vertex of P if 𝑝 is

a corner point of P. We denote the set of all vertices of P by V .

Later, polyhedrons which possibly contain the user’s utility vector

are maintained. Every time a user provides feedback, a halfspace is

built and is used to update the polyhedrons accordingly.

There are three kinds of relationship between a polyhedron P
and a hyperplane ℎ𝑖, 𝑗 : (1) P is in ℎ+

𝑖, 𝑗
(i.e., P ⊆ ℎ+

𝑖, 𝑗
); (2) P is in

ℎ−
𝑖, 𝑗

(i.e., P ⊆ ℎ−
𝑖, 𝑗
); (3) P intersects ℎ𝑖, 𝑗 . For instance, in Figure 3,

polyhedron Θ3 is in ℎ
−
2,3

and intersects ℎ2,4. To determine the rela-

tionship between ℎ𝑖, 𝑗 and P, we use the verticesV of P. If there
exist 𝑣1, 𝑣2 ∈ V such that 𝑣1 ∈ ℎ+𝑖, 𝑗 and 𝑣2 ∈ ℎ

−
𝑖, 𝑗
, P intersects with

ℎ𝑖, 𝑗 . Otherwise, P lies in either ℎ+
𝑖, 𝑗

or ℎ−
𝑖, 𝑗
.

However, since we may need to go through each vertex 𝑣 ∈ V ,

checking the relationship between ℎ𝑖, 𝑗 and P requires𝑂 ( |V|) time,

which could be slow if |V| is large in a high dimensional space.

Thus, we present two sufficient conditions to identify P in either

ℎ+
𝑖, 𝑗

or ℎ−
𝑖, 𝑗

in 𝑂 (1) and 𝑂 (2𝑑 ) time, respectively.

We first introduce two concepts: the bounding ball and bounding
rectangle of a polyhedron P, which are a ball and a rectangle bound-
ing P. Examples are shown in Figures 3 and 4. For the bounding

ball of P, denoted by B(P), its center and its radius are defined to

be B𝑐 =

∑
𝑣∈V 𝑣

|V | and B𝑟 = max𝑣∈V dist(𝑣,B𝑐 ), respectively, where
dist(𝑣,B𝑐 ) denotes the Euclidean distance between 𝑣 and B𝑐 . Then,

B(P) = {𝑝 ∈ R𝑑 | dist(𝑝,B𝑐 ) ≤ B𝑟 }. As for the bounding rectangle,
we compute the maximum and minimum values of each dimension

to be 𝑚𝑎𝑥𝑖 = max𝑣∈V 𝑣 [𝑖] and 𝑚𝑖𝑛𝑖 = min𝑣∈V 𝑣 [𝑖] (𝑖 ∈ [1, 𝑑]).
Then, the bounding rectangle of P, denoted by R(P), is defined to

be R(P) = {𝑝 ∈ R𝑑 | 𝑝 [𝑖] ∈ [𝑚𝑖𝑛𝑖 ,𝑚𝑎𝑥𝑖 ],∀𝑖 ∈ [1, 𝑑]}.

Lemma 5.1. Given a polyhedron P, ifB(P) ⊆ ℎ+
𝑖, 𝑗

orR(P) ⊆ ℎ+
𝑖, 𝑗
,

we conclude that P ⊆ ℎ+
𝑖, 𝑗
; similarly for ℎ−

𝑖, 𝑗
.

Determining whether B(P) ⊆ ℎ+
𝑖, 𝑗

can be done in 𝑂 (1) time by

checking if B𝑐 ∈ ℎ+𝑖, 𝑗 and the distance from B𝑐 to ℎ𝑖, 𝑗 is larger than

B𝑟 , and determining whether R(P) ⊆ ℎ+
𝑖, 𝑗

can be done in 𝑂 (2𝑑 )
time by checking if each vertex of R(P) is in ℎ+

𝑖, 𝑗
; similarly for ℎ−

𝑖, 𝑗
.

Although the bounding rectangle has a higher time complexity, it

bounds P more “tightly”. The performances of these two bounding

methods are compared experimentally in Section 6.1.

We are ready to describe our 𝑑-dimensional algorithms. Intu-

itively, our algorithms follow the interactive framework from [36]:

we interact with a user for rounds until we can find a point which

is one of the user’s top-𝑘 points. In each round,

• (Point selection) We select two points presented to the user and

ask the user which one s/he prefers.

• (InformationMaintenance) Based on the feedback, we update

the maintained information.

• (Stopping condition) We check the stopping condition. If it is

satisfied, we terminate and return the result.

In the following, we present the algorithms for high dimensional

IST by elaborating the strategies of each component.

5.2 HD-PI
In this section, we present algorithm HD-PI, which is a high dimen-

sional extension of 2D-PI (shown in Section 4). It performs the best

in our empirical study w.r.t. the number of questions asked.

5.2.1 Information Maintenance. We maintain two data structures:

(1) a set C, which contains disjoint polyhedrons, called partitions,

in the utility space, where the user’s utility vector might be located.

In particular, the union of partitions in C is defined to be the utility
range, denoted by 𝑅, i.e., 𝑅 = ∪Θ∈CΘ; (2) a list Γ, recording the

relationship between hyperplanes and partitions in C.
We initialize C by dividing the whole utility space into a number

of partitions such that each partition Θ is associated with a point,

which is among the top-𝑘 points w.r.t. any utility vector in Θ. One
might want to divide the utility space into the least number of

partitions, so that we can quickly locate the user’s utility vector as

explained in Section 4. However, as proved in Theorem 5.2, dividing

the utility space into the least number of partitions is NP-hard.

Theorem 5.2. Dividing the utility space into the least number of
partitions such that each partition Θ is associated with a point, which
is among the top-𝑘 points w.r.t. any utility vector in Θ, is NP-hard.

To balance the time cost and the number of partitions, we propose

a practical method to construct C. Specifically, we first find the set𝑉
of all convex points [11] in𝐷 based on some existing algorithms [11],

which has the highest utilities (i.e., top-1) w.r.t. at least one utility

vector in the utility space. In practice, we can use a sampling strat-

egy for approximating 𝑉 . Then, for each point 𝑝𝑖 ∈ 𝑉 , we create a
partition Θ𝑖 = {𝑢 ∈ R𝑑+ |𝑢 ∈ ℎ+𝑖, 𝑗 ,∀𝑝 𝑗 ∈ 𝑉 \ {𝑝𝑖 } 𝑎𝑛𝑑

∑𝑑
𝑖=1 𝑢 [𝑖] = 1}

and add it to C. It can be verified that 𝑝𝑖 is the top-1 point w.r.t. any

𝑢 ∈ Θ𝑖 , i.e., 𝑝𝑖 is the associated point ofΘ𝑖 . Note that there are𝑂 (𝑛)
partitions in C and initially 𝑅 = ∪Θ∈CΘ = {𝑢 ∈ R𝑑+ |

∑𝑑
𝑖=1 𝑢 [𝑖] = 1}.



ℎ𝑖, 𝑗 in ℎ+
𝑖, 𝑗

in ℎ+
𝑖, 𝑗

intersect even score

ℎ2,4 Θ5 Θ3 -0.1

ℎ3,5 Θ5 Θ3 1

Table 4: List Γ given that 𝑝3 ismore preferred than 𝑝2 (𝛽 = 0.1)
In list Γ, each row corresponds to a hyperplane ℎ𝑖, 𝑗 , constructed

by points 𝑝𝑖 , 𝑝 𝑗 ∈ 𝑉 . It records the relationship between ℎ𝑖, 𝑗 and

the partitions in C (e.g., in ℎ+
𝑖, 𝑗
, in ℎ−

𝑖, 𝑗
or intersect ℎ𝑖, 𝑗 ). In addition,

we store an even score for each ℎ𝑖, 𝑗 in Γ to measure how evenly

ℎ𝑖, 𝑗 divides the partitions in C. The even score will be used later

for point selection. We postpone its formal definition to the next

section. Table 3 is the example of Γ for hyperplanes in Figure 3.

When a user answers more questions, more information about

the user’s utility vector is known and the data structures C and Γ
are updated accordingly. Assume that a user prefers 𝑝𝑖 to 𝑝 𝑗 in a

question. We learn that the user’s utility vector is in ℎ+
𝑖, 𝑗
. For each

Θ in C, (1) if Θ ⊆ ℎ−
𝑖, 𝑗
, Θ is removed from C since it cannot contain

the user’s utility vector according to the definition of ℎ𝑖, 𝑗 ; and (2) if

Θ intersects ℎ𝑖, 𝑗 , Θ is updated to be Θ∩ℎ+
𝑖, 𝑗
. Then, list Γ is updated

based on the updated C: (1) partitions removed from C are deleted

in each row of Γ; (2) if there is a hyperplane ℎ𝑖′, 𝑗 ′ in Γ such that 𝑅

is in ℎ+
𝑖′, 𝑗 ′ (resp. ℎ

−
𝑖′, 𝑗 ′ ), the row of ℎ𝑖′, 𝑗 ′ is removed from Γ since the

user’s utility vector is in 𝑅, 𝑝𝑖′ must rank higher (resp. lower) than

𝑝 𝑗 ′ and thus, ℎ+
𝑖′, 𝑗 ′ and ℎ

−
𝑖′, 𝑗 ′ cannot be used to update C later; and

(3) the even scores of the remaining rows in Γ are recalculated.

Example 5.3. In Figure 3, initially, C = {Θ1,Θ2,Θ3,Θ4,Θ5} and
Γ is shown in Table 3. Suppose that a user prefers 𝑝3 to 𝑝2. We

learn that his/her utility vector is in ℎ−
2,3

(or ℎ+
3,2
). Partitions Θ1, Θ2

and Θ4 in C are removed since they are in ℎ+
2,3

(or ℎ−
3,2
) and the

other partitions in C do not change since none of them intersect

ℎ2,3. Next, partitions Θ1, Θ2 and Θ4 are deleted in each row of list

Γ. Finally, the rows of hyperplanes ℎ1,2 and ℎ2,3 are deleted from

Γ since 𝑅 is in ℎ−
1,2

and ℎ−
2,3
, and the even scores of the remaining

rows in Γ are renewed. The updated Γ is shown in Table 4.

Note that [1] presents an algorithm which focuses on the simi-

lar purpose of dividing the utility space into the least number of

partitions. However, [1] only returns an approximate solution with

a high time complexity. In detail, it involves two steps, where (1)

the first step needs to find all the k-sets (note that since there are
𝑂 (𝑛𝑑−𝜖 ) k-sets [30], where 𝜖 > 0 is a small constant, the time com-

plexity of this step is at least𝑂 (𝑛𝑑−𝜖 )) and (2) the second step is an

NP-hard problem. But, our method only requires 𝑂 (𝑛 ⌊𝑑/2⌋ ) time

[9] to obtain a small number of partitions.

5.2.2 Point Selection. We aim to filter as many partitions in C
as possible in each round so that the user’s utility vector can be

quickly located. In each round, if a user prefers 𝑝𝑖 to 𝑝 𝑗 , we remove

partitions inℎ−
𝑖, 𝑗
. Otherwise, partitions inℎ+

𝑖, 𝑗
are removed. Thus, if a

hyperplane evenly divides C into two halves, half of the partitions

in C can be removed no matter what answer the user provides.

Following this idea, in each round, we find two points 𝑝𝑖 and 𝑝 𝑗
and display them to the user, where ℎ𝑖, 𝑗 in Γ divides the partitions

in C themost evenly. To evaluate the “evenness”, we define the even
score for each hyperplane in Γ as follows.

Definition 5.4. The even score of hyperplane ℎ𝑖, 𝑗 is defined to be

min{𝑁+, 𝑁−} − 𝛽𝑁 , where 𝛽 > 0 is a balancing parameter, and 𝑁+,

𝑁− and 𝑁 denote the number of partitions in C which are in ℎ+
𝑖, 𝑗
,

are in ℎ−
𝑖, 𝑗

and intersect ℎ𝑖, 𝑗 , respectively.

Intuitively, a higher even score means that the hyperplane di-

vides the partitions in C more evenly. The first term min{𝑁+, 𝑁−}
shows that we want more partitions in ℎ+

𝑖, 𝑗
or ℎ−

𝑖, 𝑗
(and as even as

possible). The second term −𝛽𝑁 gives a penalty for those partitions

intersecting ℎ𝑖, 𝑗 since they will not contribute to the reduction on

the size of C. In each round, we present the user with points 𝑝𝑖 and

𝑝 𝑗 , where hyperplane ℎ𝑖, 𝑗 in Γ has the highest even score.

5.2.3 Stopping Condition. They are defined based on C.
Stopping Condition 1. If there is only one partition Θ left in C,
we stop and return the associated point of Θ to the user.

Stopping Condition 2. Recall that 𝑅 = ∪Θ∈CΘ. We stop if there

exists a point in 𝐷 which is one of the top-𝑘 points w.r.t. any utility

vector in 𝑅. The following lemma gives a sufficient condition to

check whether a given point 𝑝𝑖 is qualified to be returned.

Lemma 5.5. Given utility range 𝑅 and a point 𝑝𝑖 ∈ 𝐷 , 𝑝𝑖 is among
the top-𝑘 points w.r.t. any 𝑢 ∈ 𝑅 if |{𝑝 𝑗 ∈ 𝐷 \ {𝑝𝑖 }| 𝑅 ⊈ ℎ−

𝑗,𝑖
}| < 𝑘 .

Intuitively, given two points 𝑝𝑖 and 𝑝 𝑗 , if 𝑅 ⊈ ℎ−
𝑗,𝑖
, it means that

there could be a utility vector 𝑢 in 𝑅 such that 𝑝 𝑗 ranks higher than

𝑝𝑖 w.r.t. 𝑢. If the number of such kind of points is less than 𝑘 , 𝑝𝑖 is

guaranteed to be one of the top-𝑘 points w.r.t. any 𝑢 ∈ 𝑅.
To determine whether there exists a qualified point to be re-

turned, a naive idea is to check each 𝑝𝑖 ∈ 𝐷 using Lemma 5.5.

However, it could be time-consuming if 𝐷 is large. To reduce the

burden, we randomly sample a utility vector 𝑢 in 𝑅 and only check

each of the top-𝑘 points w.r.t. 𝑢 using Lemma 5.5. It is easy to ver-

ify that it suffices to check those 𝑘 points. Note that if there are

multiple qualified points, we return an arbitrary one.

5.2.4 Summary. The pseudocode of algorithm HD-PI is presented
in Algorithm 3. Its theoretical analysis is summarized as follows.

Theorem 5.6. Algorithm HD-PI solves IST by interacting with the
user for 𝑂 (𝑛) rounds. In particular, if the selected hyperplane can
divide C into equal halves without any intersecting partitions in each
round (i.e., the optimal case), IST can be solved in 𝑂 (log𝑛) rounds.

Proof. According to the definition of hyperplane ℎ𝑖, 𝑗 , we can

remove at least one partition from C in each round. Since there are

𝑂 (𝑛) partitions, there is one partition left after 𝑂 (𝑛) rounds and
stopping condition 1 is satisfied. If the selected hyperplane divides

C into equal halves without any intersecting partitions in each

round, we can prune half partitions. After 𝑂 (log𝑛) rounds, there
exists only one partition and stopping condition 1 is satisfied. □

5.3 RH
In this section, we propose the second algorithm RH. It solves IST
by asking the user 𝑂 (𝑐𝑑 log

2
𝑛) (𝑐 > 1 is a constant) questions in

expectation, which is asymptotically optimal if 𝑑 is fixed.

5.3.1 InformationMaintenance. Wemaintain a polyhedron𝑅, called

the utility range, in the utility space, which contains the user’s util-

ity vector. Initially, 𝑅 is the entire utility space, i.e., 𝑅 = {𝑢 ∈
R𝑑+ |

∑𝑑
𝑖=1 𝑢 [𝑖] = 1}. In each round, based on the user’s preference

between 𝑝𝑖 and 𝑝 𝑗 , 𝑅 is updated to be 𝑅 ∩ ℎ+
𝑖, 𝑗

(or ℎ−
𝑖, 𝑗
).



5.3.2 Stopping Condition. Since we only maintain the utility range

𝑅 in RH, stopping condition 1 in Section 5.2.3 is no longer applicable.
Fortunately, stopping condition 2 in Section 5.2.3 still holds. Besides,

we define an additional stopping condition based on 𝑅.

Stopping Condition 3. Given two points 𝑝𝑖 and 𝑝 𝑗 in 𝐷 , if hyper-

planeℎ𝑖, 𝑗 does not intersect with 𝑅, the user’s utility vector𝑢0 (note

that 𝑢0 ∈ 𝑅) must be in either ℎ+
𝑖, 𝑗

or ℎ−
𝑖, 𝑗
. The user’s preference

between 𝑝𝑖 and 𝑝 𝑗 is known. If this holds for all pairs of points in

𝐷 , the ranking of all points in 𝐷 is known. In this case, we stop and

arbitrarily return one of the top-𝑘 points.

5.3.3 Point Selection. In each round, hyperplane ℎ𝑖, 𝑗 , which con-

sists of the two presented points, divides 𝑅 into two smaller halves.

Depending on the user’s feedback, 𝑅 becomes smaller by keeping

one half left (i.e., 𝑅 ∩ ℎ+
𝑖, 𝑗

or 𝑅 ∩ ℎ−
𝑖, 𝑗
). The intuition behind our

point selection strategy is that if 𝑅 is smaller, it is easier to meet

the stopping conditions. Therefore, in each round, we select two

points 𝑝𝑖 and 𝑝 𝑗 , where hyperplane ℎ𝑖, 𝑗 divides 𝑅 the most “evenly”,
hoping that we can reduce the size of 𝑅 by half after the question.

Since it is expensive to compute the exact size of 𝑅, we adopt the

following heuristic. Denote the center of 𝑅 by 𝑅𝑐 =
∑

𝑣∈VR 𝑣/|VR |,
whereVR is the set of vertices of 𝑅. We present the user with points

𝑝𝑖 and 𝑝 𝑗 , where hyperplane ℎ𝑖, 𝑗 is the closest to 𝑅𝑐 .

However, to select the hyperplane with the minimum distance

to 𝑅𝑐 , we need to check 𝑂 (𝑛2) hyperplanes, which could be costly

if 𝑛 is large. To reduce the number of hyperplanes considered, we

initialize a random order of all points in 𝐷 . With a slight abuse

of notations, denote by 𝑝𝑖 the 𝑖-th point in the random order and

define a set 𝐻𝑖 of hyperplanes to be 𝐻𝑖 = {ℎ𝑖, 𝑗 | ∀𝑗, 𝑗 < 𝑖}. The
hyperplane selection starts from 𝐻2 (since 𝐻1 = ∅) and moves to

the next 𝐻𝑖+1 if the current 𝐻𝑖 does not contain any hyperplanes

intersecting 𝑅 since only the hyperplanes intersecting 𝑅 can be used

to make 𝑅 smaller. In each round, we select the hyperplane in the

current 𝐻𝑖 , which intersects 𝑅 and has the smallest distance to 𝑅𝑐 .

5.3.4 Summary. The pseudocode of algorithm RH is shown in

Algorithm 4. Its theoretical analysis is presented in Theorem 5.7.

Theorem 5.7. Algorithm RH solves IST by interacting with the
user for 𝑂 (𝑐𝑑 log𝑛) rounds in expectation, where 𝑐 > 1 is a constant.

Proof Sketch. We first show that if the probabilities of all the

possible rankings are equal, 𝑅𝐻 asks𝑂 (𝑑 log𝑛) questions in expec-

tation and then prove that in the general case, the expected number

of questions asked is 𝑂 (𝑐𝑑 log𝑛), where 𝑐 > 1 is a constant. □

Corollary 5.8. Algorithm RH is asymptotically optimal in terms
of the number of questions asked in expectation for IST if 𝑑 is fixed.

6 EXPERIMENTS
We conducted experiments on a machine with 3.10𝐺𝐻𝑧 CPU and

16𝐺𝐵 RAM. All programs were implemented in C/C++.

Datasets.The experiments were conducted on synthetic and real

datasets which are commonly used in existing studies [13, 16, 24, 36].

Specifically, the synthetic datasets are anti-correlated [7] and the

real datasets are Island, Weather, Car and NBA. Island contains

63, 383 2-dimensional geographic locations andWeather includes
178, 080 tuples described by four attributes. Car is 4-dimensional,

Algorithm 3: The HD-PI Algorithm
Input: A point set 𝐷

Output: A point 𝑝 , which is one of the user’s top-𝑘 points

1 Divide the utility space into several partitions Θ𝑥

2 C ← {Θ1,Θ2, ...,Θ𝑚}
3 Initialize the utility range 𝑅 and the list Γ

4 while |C| > 1 & ∄𝑝 ∈ 𝐷 satisfying Lemma 5.5 do
5 Select hyperplane ℎ𝑖, 𝑗 in Γ with the highest even score

6 Display points 𝑝𝑖 and 𝑝 𝑗 to the user

7 Update 𝑅, C and Γ based on the user’s feedback

8 return a point 𝑝 , which is one of the user’s top-𝑘 points

Algorithm 4: The RH Algorithm

Input: A point set 𝐷

Output: A point 𝑝 , which is one of the user’s top-𝑘 points

1 Initialize a random order of points in 𝐷 , 𝑖 ← 2

2 Initialize utility range 𝑅 and set 𝐻𝑖

3 while the stopping conditions are not satisfied do
4 while ∄ℎ𝑖, 𝑗 ∈ 𝐻𝑖 intersecting 𝑅 do
5 Initialize set 𝐻𝑖+1, 𝑖 ← 𝑖 + 1
6 Find ℎ𝑖, 𝑗 ∈ 𝐻𝑖 intersecting 𝑅 with the min-distance to 𝑅𝑐

7 Display points 𝑝𝑖 and 𝑝 𝑗 to the user

8 Update 𝑅 based on the user’s feedback

9 return a point 𝑝 , which is one of the user’s top-𝑘 points

which consists of 68, 010 used cars after it is filtered by only keeping

the cars whose attribute values are in normal range. NBA involves

16, 916 players after the records with missing values are deleted. Six

attributes are used to describe the performance of each player. For

all the datasets, each dimension is normalized to (0, 1]. Note that
in existing studies [8, 36], they preprocessed datasets to contain

skyline points only (which are all possible top-1 points for any

utility function) since they look for (close to) top-1 point. Consistent

with their setting, we preprocessed all the datasets to include 𝑘-

skyband points (which are all possible top-𝑘 points for any utility

function) [13] since we are interested in one of the top-𝑘 points.

Algorithms. We evaluated our 2-dimensional algorithm: 2D-PI
and 𝑑-dimensional algorithms: HD-PI and RH. As mentioned in Sec-

tion 5.2.1, the sampling strategy is utilized to accelerate finding con-

vex points for HD-PI. Specifically, the utility space is uniformly sam-

pled and the top-1 point w.r.t. each sampled utility vector is found.

Based on the different strategies for finding convex points, HD-
PI is distinguished into two versions: accurate and sampling. The

competitor algorithms are: Median [36], Hull [36], Active-Ranking
[14], UtilityApprox [22], UH-Random [36], UH-Simplex [36] and

Preference-Learning [27]. Since none of them can solve our problem

directly, we adapted them as follows:

• AlgorithmsMedian andHull (only work in a 2-dimensional space)

return the user’s top-1 point by interacting with the user. We

keep these two algorithms and create a new version of them,

namely Median-Adapt and Hull-Adapt, by modifying their point
deletion condition to that a point is deleted if it cannot be one of



the user’s top-𝑘 (originally top-1) points according to the learnt

information, and their stopping condition to that the algorithm

stops if there are fewer than 𝑘 points left (instead of 1 point left).

• Algorithm Active-Ranking focuses on learning the full ranking

of all points by interacting with the user. We arbitrarily return

one of the top-𝑘 points when the ranking is obtained.

• Algorithm UtilityApprox reduces the regret ratio (used for evalu-

ating returned points) [22] by interacting with the user. It termi-

nates when the regret ratio satisfies a given threshold 𝜖 . We set

𝜖 = 1 − 𝑓 (𝑝𝑘 )/𝑓 (𝑝1), where 𝑝1 and 𝑝𝑘 are points with the first

and 𝑘-th largest utility w.r.t. the user’s utility vector, respectively.

In this way, if the regret ratio of the returned point is smaller

than 𝜖 , the returned point must be one of the top-𝑘 points.

• Algorithms UH-Simplex and UH-Random return one point, where

either its utility is the largest w.r.t. the user’s utility vector or its

regret ratio satisfies a given threshold 𝜖 , by interacting with the

user. We set 𝜖 the same as that in algorithm UtilityApprox. Be-
sides, we create another version of UH-Simplex and UH-Random,

namely UH-Simplex-Adapt and UH-Random-Adapt, by modifying

their point deletion condition and their stopping condition in the

same way we handle algorithms Median-Adapt and Hull-Adapt.
• Algorithm Preference-Learning learns the user’s utility vector by

interacting with the user. According to the experimental results

in [27], the utility vector learnt is very close to the theoretical

optimum if the error threshold 𝜖 of the learnt utility vector is set

to a value below 10
−5

(e.g., 10
−6
). In our experiment, we set 𝜖 to

10
−6

(since the learnt utility vector could achieve the optimum),

and arbitrarily return one of the top-𝑘 points w.r.t. the learnt

utility vector.

Parameter Setting.We evaluated the performance of each al-

gorithm by varying different parameters: (1) different bounding

strategies; (2) parameter 𝛽 , which is a balancing parameter in the

even score shown in Section 5.2.2; (3) the dataset size 𝑛; (4) the

dimensionality 𝑑 ; (5) the parameter 𝑘 . Unless stated explicitly, for

each synthetic dataset, the number of points was set to 100, 000 (i.e.,

𝑛 = 100, 000) and the dimensionality was set to 4 (i.e., 𝑑 = 4).

Performance Measurement. We evaluated the performance

of each algorithm by two measurements: (1) execution time which is

the processing time; (2) the number of questions asked which is the

number of rounds interacting with the user. Each algorithm was

conducted 10 times with different generated user utility vectors

and the average performance was reported.

In the following, the parameter setting of our algorithms is stud-

ied in Section 6.1. The performance of all algorithms on the syn-

thetic and real datasets is presented in Section 6.2 and Section 6.3,

respectively. In Section 6.4, a user study under a purchasing used

car scenario is demonstrated. Section 6.5 shows our motivation

study, and finally, the experiments are summarized in Section 6.6.

6.1 Performance Study of Our Algorithms
We compared different bounding strategies applied to our algorithm

HD-PI. To evaluate their performance, we included two measure-

ments: (1) effective ratio which is the ratio 𝑁𝐵/𝑁𝐼 , where 𝑁𝐼 is the

number of times to identify the relationship between hyperplanes

and partitions, and 𝑁𝐵 is the number of times that the relationship

between hyperplanes and partitions can be identified by bounding

ball/rectangle strategy; (2) execution time which is the execution

time of HD-PI with different bounding strategies. For the first mea-

surement, we compared 2 variants ofHD-PI, namelyHD-PI(Ball) and
HD-PI(Rectangle). HD-PI(Ball) (HD-PI(Rectangle)) is HD-PI using the
bounding ball (rectangle) strategy. For the second measurement, we

additionally included one variant called HD-PI(NoBall-NoRectangle)
which is HD-PI without using any bounding strategy. As shown

in Figure 5, the bounding rectangle strategy can identify more re-

lationships than the bounding ball strategy, where their effective

ratios are around 30% and 20%, respectively. However, the execution

time by applying the bounding ball strategy is smaller since it only

needs 𝑂 (1) time to check each relationship. Thus, we stick to the

bounding ball strategy in the rest of the experiments.

We studied the balancing parameter 𝛽 in the even score (shown in

Definition 5.4), on algorithm HD-PI in Figure 6, through evaluating

the execution time and the number of questions asked. The result

shows that the two measurements increase when 𝛽 increases. Thus,

we set 𝛽 = 0.01 in the rest of the experiments.

In Figure 7, we evaluated the result quality of algorithm HD-PI
with the sampling strategy for finding convex points. Following [8,

10], we define the accuracy of the returned point 𝑝 to be 𝑓 (𝑝)/𝑓 (𝑝𝑘 )
if 𝑓 (𝑝) < 𝑓 (𝑝𝑘 ) (otherwise the accuracy is set to 1), where point

𝑝𝑘 has the 𝑘-th largest utility in 𝐷 w.r.t. the user’s utility vector.

It can be seen that the accuracy of the returned point on different

datasets are close to 1. This concludes that the sampling strategy

for finding convex points affects little to the result quality.

6.2 Performance on Synthetic Datasets
We compared our 2-dimensional algorithm 2D-PI, against Median,
Hull, Median-Adapt and Hull-Adapt on a 2-dimensional dataset by

varying the parameter 𝑘 . For completeness, our 𝑑-dimensional al-

gorithms, HD-PI and RH, and existing ones were also involved by

setting 𝑑 = 2 (Since the performance of 𝑑-dimensional algorithms

is almost the same as that on a 4-dimensional dataset, we analyze

them later). Figures 8(a) and (b) show the execution time and the

number of questions asked of each algorithm, respectively. All the

algorithms finish within a few seconds. Note that Median and Hull
are slightly faster than 2D-PI. But, they ask much more questions.

When 𝑘 ≥ 60, they ask three times as many questions as 2D-PI. Al-
though 2D-PI spends slightly more time, its execution time is small

and reasonable given that it requires the least number of questions

for arbitrary 𝑘 . For Median-Adapt and Hull-Adapt, although their

modified stopping conditions are easier to achieve, the adaptation

of the point deletion condition reduces the effectiveness of deleting

points, which results in a long execution time and a large number

of questions asked (even increase when 𝑘 increases).

Figures 8 and 9 demonstrate the performance of our algorithms,

HD-PI and RH, and the existing 𝑑-dimensional algorithms on a

2-dimensional dataset and 4-dimensional dataset, respectively. Al-

gorithm Active-Ranking asks the largest number of questions with a

long execution time, e.g., more than 1000 questions and 500 seconds

on the 4-dimensional dataset if 𝑘 ≥ 50, since it learns the ranking

of all points. It even runs gradually slower and asks more questions

when 𝑘 increases, because of its sensitivity to the input size (in-

creases with 𝑘 due to the 𝑘-skyband preprocessing). The execution

times ofUH-Random,UH-Simplex and Preference-Learning are larger
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Figure 5: Bounding Strategies
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Figure 8: 2D Dataset
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Figure 9: 4D Dataset
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Figure 10: Vary n (k=20, d=4)
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Figure 11: Vary d (k=20, n=100k)
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Figure 12: Weather
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Figure 13: NBA

than those of our algorithms. Specifically, on the 2-dimensional

dataset, UH-Random and UH-Simplex run 2-10 times as much time

as our algorithms, and Preference-Learning takes about 2-3 orders

of magnitude longer than our algorithms. On the 4-dimensional

dataset, UH-Random and UH-Simplex take more than 4 times and

Preference-Learning takes more than 10 times as much time as our

algorithms. For the number of questions asked, UH-Random and

UH-Simplex perform well when 𝑘 = 1, since they are designed

specially for returning the top-1 point. However, the number of

questions asked almost remains unchanged when 𝑘 increases. Al-

gorithm Preference-Learning also asks much more questions than

our algorithms when 𝑘 is slightly large. For UH-Random-Adapt and
UH-Simplex-Adapt, same asMedian-Adapt andHull-Adapt, the adap-
tation of the point deletion condition decreases the effectiveness of

deleting points, which results in a long execution time and many

questions asked. In particular, they take more than 3 and 2000 sec-

onds and require around 13 and 60 questions when 𝑘 = 100 on the

2-dimensional and the 4-dimensional datasets, respectively. Except

for UtilityApprox, our algorithms RH and HD-PI take the least time.

For arbitrary 𝑘 , they only require within 0.02 second and 4 seconds

on the 2-dimensional and 4-dimensional datasets, respectively. Note

that UtilityApprox is faster than our algorithm, since it constructs

fake points and does not rely on the dataset. However, as we argue

in Section 2, displaying fake points is not suitable for real systems.

Although our algorithms take slightly more time, our execution

times are small and reasonable since our algorithms use real points

(points from datasets) and ask the least number of questions. For

example, when 𝑘 = 100 on the 4-dimensional dataset, our algo-

rithms only require half the number of questions asked by the best

existing algorithm. Moreover, except for UtilityApprox, there is no
existing algorithm whose number of questions asked decreases sig-

nificantly when 𝑘 increases, while our algorithms can have at least

32% reduction. According to the results, in the following, we use

the state-of-the-art existing 𝑑-dimensional algorithms UH-Random
and UH-Simplex for comparison, and include algorithms Median
and Hull for the 2-dimensional case additionally.



In Figure 10, we studied the scalability on the dataset size 𝑛. Our

algorithms HD-PI and RH scale the best in terms of the execution

time and the number of questions asked. For example, our execution

times are less than 10 seconds even if 𝑛 ≥ 500, 000, while the others

run up to 100 seconds. Our algorithms also ask at least 2 fewer

questions than the others for arbitrary 𝑛. In Figure 11, we evaluated

the scalability on the dimensionality 𝑑 . Compared with the existing

ones, RH and HD-PI consistently require fewer questions and less

execution time for arbitrary𝑑 . For instance, when𝑑 = 4, the number

of questions required by UH-Random and UH-Simplex are around

15 and 17, while our algorithms need at most 11 questions. When

𝑑 = 5, UH-Simplex and UH-Random run about 230 and 205 seconds,

respectively, while RH finishes within only 1 seconds.

6.3 Performance on Real Datasets
We studied the performance of our algorithms against existing

algorithms, namely Median (for 2D), Hull (for 2D), UH-Random and

UH-Simplex, on 4 real datasets. Due to the lack of space, we only

show the performance on Weather (with the largest data size) and

NBA (with the largest dimensionality) in Figure 12 and Figure 13,

respectively. The results on Island and Car can be found in the

technical report [34]. Except that HD-PI takes similar time with

UH-Random on dataset NBA, our algorithms perform much better

than the others both on the number of questions asked and the

execution time on Weather and NBA. For instance, when 𝑘 ≥ 50,

both HD-PI and RH need nearly half the number of questions asked

by the others on both datasets. As for the execution time, both

HD-PI and RH spend at most 0.15 seconds onWeather when 𝑘 ≥ 50,

while the others take more than 1 second.

6.4 User Study
We conducted a user study on the used car dataset Car to see the

impact of user mistakes on the final results, since users might make

mistakes or provide inconsistent feedback during the interaction.

Following the setting in [27, 36], 1000 candidate cars were ran-

domly selected from the dataset described by 4 attributes, namely

price, year of purchase, power and used kilometers. 30 participants

were recruited and their average result was reported. We compared

our algorithms RH and HD-PI in sampling and accurate versions,

against 4 existing algorithms, namely UH-Random, UH-Simplex,
Preference-Learning and Active-Ranking. Each algorithm aims at

finding one of the user’s top-20 cars. Since the user’s utility vector

is unknown, we re-adapted algorithms UH-Random, UH-Simplex
and Preference-Learning (instead of the way described previously).

• Algorithm Preference-Learning maintains an estimated user’s

utility vector 𝑢𝑒 during the interaction. We compared the user’s

answer of some randomly selected questions with the prediction

w.r.t. 𝑢𝑒 . If 75% questions [27] can be correctly predicted, we stop

and return one of the top-20 cars w.r.t. 𝑢𝑒 .

• For UH-Random and UH-Simplex, we set the threshold 𝜖 = 0 and

this guarantees that the returned car is one of the top-20 cars.

Each algorithmwasmeasured via: (1) The number of questions asked;
(2) Degree of boredness which is a score from 1 to 10 given by each

participant. It indicates how bored the participant feels when s/he

sees the returned car after being asked several questions (1 denotes

the least bored and 10 means the most bored). (3) Rank which

is the ranking given by each participant. Specifically, since the

participants sometimes gave the same score for different algorithms,

to distinguish them clearly, we asked each participant to give a

ranking of the algorithms. Note that to reduce the workload, we

only asked for the ranking of 5 algorithms with the least number

of questions asked and the lowest degree of boredness: RH, HD-PI
in sampling and accurate versions, UH-Random and UH-Simplex.

Figure 16 shows the results. The number of questions required

by HD-PI-sampling, HD-PI-accurate and RH are 4.1, 4.8 and 7.1,

respectively, while existing algorithms ask more than 8.4 questions.

In particular, the number of questions asked by Preference-Learning
and Active-Ranking are up to 20.3 and 45.4, respectively. Besides,

our algorithms HD-PI-sampling, HD-PI-accurate and RH are the

least boring and rank the best. Their degrees of boredness are 1.9,

2.13 and 3, respectively. In comparison, the degrees of boredness

of existing algorithms are more than 3.75 and the most boring

algorithm Active-Ranking is up to 7.7, especially.

6.5 Motivation Study
In this section, we gave experimental results/studies to show why

problem IST is effective in practice. In Section 6.5.1, we first com-

pared the result in problem IST (returning one of the top-𝑘 points)

with the result in a variant of problem IST returning all the top-𝑘
points. We find that the result in problem IST is convincing since

our problem IST could involve less user interaction and execution

time. Then, in Section 6.5.2, we performed a user study to com-

pare the result in problem IST with the result in another variant of

problem IST returning some of the top-𝑘 points. We find that the

result in problem IST is also convincing since participants in the

user study felt the most satisfied with the result in problem IST.

6.5.1 User Effort Comparison. We compared the user effort re-

quired by two cases: returning one of the top-𝑘 points vs. returning

all the top-𝑘 points by interacting with the user. Our algorithms RH
and HD-PI are modified to return all the top-𝑘 points as follows. (1)

Their stopping conditions are changed. Recall that we maintain a

utility range 𝑅 in the utility space which contains the user’s utility

vector. The algorithms stop if we can find 𝑘 points which are the

top-𝑘 points w.r.t. any utility vector in 𝑅, i.e., if there are 𝑘 points

which fulfill Lemma 5.5. (2) The information maintenance part of

HD-PI is extended. A point set𝑉𝑑 is maintained. When there is only

one partition Θ left in set C and the modified stopping condition

is not satisfied, the associated point of partition Θ is added to 𝑉𝑑 .

Then, partition Θ is divided into several smaller partitions Θ𝑖 added

to C such that Θ𝑖 = {𝑢 ∈ Θ|𝑢 ∈ ℎ+
𝑖, 𝑗
,∀𝑝 𝑗 ∈ 𝑉 \ {𝑝𝑖 }}, where 𝑉

contains all the convex points in 𝐷 \𝑉𝑑 .
The original version (returning one of the top-𝑘 points), de-

noted by RH, HD-PI-sampling and HD-PI-accurate, and the modified

version (returning all the top-𝑘 points), denoted by RH-AllTopK,HD-
PI-sampling-AllTopK and HD-PI-accurate-AllTopK, were conducted
on the 6 datasets described before. Due to the lack of space, we only

show in Figures 14 and 15 the performance on the 4-dimensional

synthetic dataset and theNBA dataset (with the largest dimensional-

ity). The results on the other datasets can be found in the technical

report [34]. It can be seen that the modified version is costly. It

runs 1− 2 orders of magnitude longer and requires 4-10 times more



RH

HD-PI-sampling

HD-PI-accurate

RH-AllTopK

HD-PI-sampling-AllTopK

HD-PI-accurate-AllTopK

0

40

80

120

160

 0  20  40  60  80  100

T
im

e
 (

s
e

c
o

n
d

s
)

k

0

20

40

60

0 20 40 60 80 100
#

 o
f 

Q
u

e
s
ti
o

n
k

(a) (b)

Figure 14: 4D Dataset (Motivation)
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Figure 15: NBA (Motivation)
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Figure 17: User Study (Motivation)

questions than the original version when 𝑘 ≥ 20. For example,

RH asks about 9 questions within 0.08 seconds, while RH-AllTopK
needs around 86 questions within 22 seconds on the NBA dataset

when 𝑘 = 80. This verifies our claim that returning more than one

of the top-𝑘 comes with the price of additional user effort and thus,

for achieving a good trade-off between the output size and the user

effort, our current problem setting is one best option.

6.5.2 User Satisfactory Study. We conducted a user study on our

algorithms RH and HD-PI in sampling and accurate versions to

verify whether users are willing to spend more effort for larger

output in real scenarios (i.e., whether users would like to obtain

some (possibly, more than one) of the top-𝑘 points). Following the

setting in Section 6.4, we selected 1000 candidate cars randomly

from dataset Car and recruited 30 participants. Our algorithms are

modified to return 𝑘 ′ (𝑘 ′ ≤ 20) out of the top-20 cars. Specifically,

each algorithm stops if there are𝑘 ′ points which are the top-𝑘 points
w.r.t. any utility vector in utility range 𝑅, i.e., if there are 𝑘 ′ points
which fulfill Lemma 5.5. The modified algorithms are denoted by

RH-SomeTopK, HD-PI-SomeTopK and HD-PI-accurate-SomeTopK.
We studied each algorithm under 5 cases: returning 1, 5, 10, 15, 20

cars out of the top-20 cars by interactingwith the user and evaluated

each case with three measurements. (1) The number of questions
asked; (2) Degree of boredness (mentioned in Section 6.4); (3) Rank
which is the 5 cases’ ranking given by each participant. For the

latter two measurements, participants were asked to consider both

the number of returned cars and their effort spent.

Figure 17 shows the results. With the increasing output size, the

number of questions asked increases dramatically, and the degree of

boredness and the rank also increase. Nevertheless, returning one

of the top-20 cars asks the least number of questions, has the lowest

degree of boredness and ranks the best. This indicates that returning

one of the top-𝑘 points achieves the best user satisfactory level.

6.6 Summary
The experiments showed the superiority of our algorithms over the

best-known existing ones: (1) We are effective and efficient. Algo-

rithms RH and HD-PI ask fewer questions within less time than

existing algorithms (e.g., half the number of questions asked on the

2-dimensional dataset compared with UH-Random and UH-Simplex
when 𝑘 ≥ 80). (2) Our algorithms scale well on the dimensional-

ity and the dataset size (e.g., ours ask at most 11 questions when

𝑛 = 1, 000, 000 on the 4-dimensional dataset, while UH-Random and

UH-Simplex need around 15 and 17 questions). (3) The bounding

strategies are useful. The bounding ball strategy can identify more

than 20% relationship between hyperplanes and partitions. In sum-

mary, 2D-PI asks the least number of questions in a 2-dimensional

space with a small execution time (e.g., one third of questions asked

compared with Median and Hull when 𝑘 ≥ 60). In a 𝑑-dimensional

space, RH runs the fastest (e.g., it runs within 1 second, while UH-
Random and UH-Simplex need more than 200 seconds when 𝑑 = 5)

and HD-PI asks the least number of questions (e.g., half the number

of questions asked on the 4-dimensional dataset compared with

UH-Random and UH-Simplex when 𝑘 ≥ 50).

7 CONCLUSION
In this paper, we present interactive algorithms for searching one

of the user’s top-𝑘 tuples, pursing as little user effort as possible.

In a 2-dimensional space, we propose algorithm 2D-PI, which is

asymptotically optimal w.r.t. the number of questions asked. In a 𝑑-

dimensional space, two algorithms RH andHD-PI are presented, and
perform well w.r.t. the execution time and the number of questions

asked. In particular, for HD-PI, we propose two versions: sampling

and accurate, which target at speed and accuracy, respectively.

Extensive experiments showed that our algorithms are both efficient

and effective in finding one of the user’s top-𝑘 tuples by asking

few questions within little time. As for future work, we consider

the situation that users might make mistakes when answering

questions.
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